Search results for "Techniques: photometric"

showing 10 items of 14 documents

Long-term optical and X-ray variability of the Be/X-ray binary H 1145-619: Discovery of an ongoing retrograde density wave

2017

Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. We investigate the correlation between the optical emission and the X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 years. We have used optical spectra from the SAAO, SMARTS and SALT telescopes and optical photometry from INTEGRAL/OMC and ASAS. We also used X-ray observations from INTEGRAL/…

BrightnessBe starAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectX-ray binarystars: emission-lineFOS: Physical sciencesAstrophysics01 natural sciencesSpectral lineDensity wave theoryPhotometry (optics)X-rays: binariesstars: neutrontechniques: photometric0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsBeAstronomy and AstrophysicsLight curvestars: emission-line BeAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceSkyAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenatechniques: spectroscopicAstronomy & Astrophysics
researchProduct

Euclid preparation. XII. Optimizing the photometric sample of the Euclid survey for galaxy clustering and galaxy-galaxy lensing analyses

2021

Pocino, A., et al. (Euclid Collaboration)

luminous red galaxiesCosmological parameterAstrophysicsSurveys01 natural sciencesCosmologytechniques: photometricgalaxiesGalaxies: distances and redshiftdistances and redshiftsSurvey010303 astronomy & astrophysicsWeak gravitational lensingPhysicsRedshift surveylsstastro-ph.COgalaxies: distances and redshiftsconstraintsAstrophysics - Cosmology and Nongalactic Astrophysicsredshift surveyCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmological parametersFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsphotometricSettore FIS/05 - Astronomia e Astrofisicasurveys0103 physical sciencesdistances and redshifts [Galaxies]cosmological parametersSpurious relationshipCluster analysisdark energy surveyAstrophysics::Galaxy Astrophysics010308 nuclear & particles physicsphotometric [Techniques]Astronomy and Astrophysicsspace115 Astronomy Space scienceRedshiftGalaxySpace and Planetary ScienceCosmological parameters; Galaxies: distances and redshifts; Surveys; Techniques: photometrictechniquesFocus (optics)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologycosmic shearintrinsic alignments
researchProduct

Photospheric response to an ellerman bomb-like event—an analogy of Sunrise/IMaX observations and MHD simulations

2017

S. Danilovic et. al.

PhysicsPhotosphere010504 meteorology & atmospheric sciencesphotosphere [Sun]Event (relativity)photometric [Techniques]Sun: photosphereAnalogyAstronomyAstronomy and AstrophysicsAstrophysics7. Clean energy01 natural sciencesmagnetic fields [Sun]Sun: activitySpace and Planetary Science0103 physical sciencesSunriseactivity [Sun]MagnetohydrodynamicsSun: magnetic fields010303 astronomy & astrophysicsChromosphereTechniques: photometric0105 earth and related environmental sciences
researchProduct

ELDAR, a new method to identify AGN in multi-filter surveys: the ALHAMBRA test case

2017

We present ELDAR, a new method that exploits the potential of medium- and narrow-band filter surveys to securely identify active galactic nuclei (AGN) and determine their redshifts. Our methodology improves on traditional approaches by looking for AGN emission lines expected to be identified against the continuum, thanks to the width of the filters. To assess its performance, we apply ELDAR to the data of the ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical) survey, which covered an effective area of 2.38 deg2 with 20 contiguous medium-band optical filters down to F814W ≃ 24.5. Using two different configurations of  ELDAR in which we require the detection of at lea…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusactive [Galaxies][ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Continuum (design consultancy)FOS: Physical sciencesAstrophysicsSurveys01 natural sciencestechniques: photometricemission lines [Quasars]Galaxies: distances and redshiftssurveys0103 physical sciencesdistances and redshifts [Galaxies]Emission spectrumOptical filterdata analysis [Methods]010303 astronomy & astrophysicsPhysicsANÁLISE DE DADOSNumber density010308 nuclear & particles physicsphotometric [Techniques]galaxies: active – galaxies: distances and redshiftsAstronomy and AstrophysicsFilter (signal processing)Galaxies: activeAstrophysics - Astrophysics of Galaxiesmethods: data analysisGalaxyRedshiftquasars: emission linesSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

A Precise Photometric Ratio via Laser Excitation of the Sodium Layer II: Two-photon Excitation Using Lasers Detuned from 589.16 nm and 819.71 nm Reso…

2020

This article is the second in a pair of articles on the topic of the generation of a two-color artificial star (which we term a "laser photometric ratio star," or LPRS) of de-excitation light from neutral sodium atoms in the mesosphere, for use in precision telescopic measurements in astronomy and atmospheric physics, and more specifically for the calibration of measurements of dark energy using type Ia supernovae. The two techniques respectively described in both this and the previous article would each generate an LPRS with a precisely 1:1 ratio of yellow (589/590 nm) photons to near-infrared (819/820 nm) photons produced in the mesosphere. Both techniques would provide novel mechanisms f…

Atmospheric physicsPhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicslaw.inventionTelescopetechniques: photometricsymbols.namesakeOpticslawAstrophysics::Solar and Stellar AstrophysicsRayleigh scatteringdark energyInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsPhysicsbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsSodium layerAstronomy and AstrophysicstelescopesPolarization (waves)Laser[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]instrumentation: miscellaneousWavelengthphotometric methods[SDU]Sciences of the Universe [physics]Space and Planetary SciencesymbolsAstrophysics::Earth and Planetary Astrophysicsmethods: observationalbusinesstechniquesAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Correcting the effect of stellar spots on ARIEL transmission spectra – II. The limb-darkening effect

2021

This paper is part of an effort to correct the transmission spectra of a transiting planet orbiting an active star. In Paper I (Cracchiolo et al. 2020) we have demonstrated a methodology to minimize the potential bias induced by unocculted star spots on the transmission spectrum, assuming a spot model parameterized by filling factor and temperature. In this work we introduce the limb darkening effect, therefore the position of the spot in the stellar disk and the impact parameter of the transiting planet now play a key role. The method is tested on simulations of planetary transits of three representative kinds of planetary systems, at ARIEL resolution. We find that a realistic treatment of…

Stars: activityFOS: Physical sciencesTechniques: spectroscopicAstrophysicsF.2.2; I.2.701 natural sciencesSpectral lineSettore FIS/05 - Astronomia E AstrofisicaPlanet0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Earth and Planetary Astrophysics (astro-ph.EP)PhysicsPlanets and satellites: atmosphere010308 nuclear & particles physicsFilling factorI.2.7StarspotAstronomy and AstrophysicsPlanetary systemStarspotsAstrophysics - Solar and Stellar AstrophysicsTransmission (telecommunications)Space and Planetary ScienceLimb darkeningAstrophysics::Earth and Planetary AstrophysicsF.2.2Impact parameterAstrophysics - Instrumentation and Methods for AstrophysicsTechniques: photometricAstrophysics - Earth and Planetary AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Flux and color variations of the quadruply imaged quasar HE 0435-1223

2011

aims: We present VRi photometric observations of the quadruply imaged quasar HE 0435-1223, carried out with the Danish 1.54m telescope at the La Silla Observatory. Our aim was to monitor and study the magnitudes and colors of each lensed component as a function of time. methods: We monitored the object during two seasons (2008 and 2009) in the VRi spectral bands, and reduced the data with two independent techniques: difference imaging and PSF (Point Spread Function) fitting.results: Between these two seasons, our results show an evident decrease in flux by ~0.2-0.4 magnitudes of the four lensed components in the three filters. We also found a significant increase (~0.05-0.015) in their V-R …

Point spread functionCosmology and Nongalactic Astrophysics (astro-ph.CO)FluxFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensing01 natural scienceslaw.inventionTelescopeSettore FIS/05 - Astronomia e AstrofisicaObservatorylaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsgeneral – gravitational lensing; weak – techniques: photometric [quasars]Astrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsphotometric [Techniques]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsQuasargeneral [Quasars]Spectral bandsSpace and Planetary Scienceastro-ph.COAstrophysics::Earth and Planetary Astrophysicsweak [Gravitational lensing]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A precise photometric ratio via laser excitation of the sodium layer - I. One-photon excitation using 342.78 nm light

2020

The largest uncertainty on measurements of dark energy using type Ia supernovae is presently due to systematics from photometry; specifically to the relative uncertainty on photometry as a function of wavelength in the optical spectrum. We show that a precise constraint on relative photometry between the visible and near-infrared can be achieved in upcoming surveys (such as in LSST at the Vera C. Rubin Observatory) via a mountaintop-located laser source tuned to the 342.78 nm vacuum excitation wavelength of neutral sodium atoms. Using a high-power (500 W) laser modified from laser guide star studies, this excitation will produce an artificial star (which we term a "laser photometric ratio s…

PhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicslaw.inventionPhotometry (optics)techniques: photometricOpticslawAstrophysics::Solar and Stellar Astrophysicsdark energyInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsPhysicsbusiness.industrymethods:observationalAstrophysics::Instrumentation and Methods for AstrophysicsSodium layerAstronomy and AstrophysicstelescopesLaser[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]instrumentation: miscellaneousWavelengthLaser guide starSpace and Planetary Science[SDU]Sciences of the Universe [physics]instrumentation:miscellaneousmethods: observationalbusinesstechniques:photometricAstrophysics - Instrumentation and Methods for AstrophysicsExcitationVisible spectrumAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A New Look at Spitzer Primary Transit Observations of the Exoplanet HD 189733b

2014

Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6$\mu$m during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent wa…

PhysicsEarth and Planetary Astrophysics (astro-ph.EP)AstronomyFOS: Physical sciencesAstronomy and AstrophysicsLight curveBlind signal separationIndependent component analysisExoplanetdata analysis planets and satellites: atmospheres planets and satellites: individual: HD 189733b techniques: photometric [methods]Settore FIS/05 - Astronomia E AstrofisicaSpitzer Space TelescopeSpace and Planetary SciencePlanetPrimary (astronomy)methods: data analysis planets and satellites: atmospheres planets and satellites: individual: HD 189733b techniques: photometricTransit (astronomy)Astrophysics - Earth and Planetary Astrophysics
researchProduct

The large trans-Neptunian object 2002 TC 302 from combined stellar occultation, photometry, and astrometry data

2020

All authors: Ortiz, J. L.; Santos-Sanz, P.; Sicardy, B.; Benedetti-Rossi, G.; Duffard, R.; Morales, N.; Braga-Ribas, F.; Fernández-Valenzuela, E.; Nascimbeni, V.; Nardiello, D.; Carbognani, A.; Buzzi, L.; Aletti, A.; Bacci, P.; Maestripieri, M.; Mazzei, L.; Mikuz, H.; Skvarc, J.; Ciabattari, F.; Lavalade, F. Scarfi, G.; Mari, J. M.; Conjat, M.; Sposetti, S.; Bachini, M.; Succi, G.; Mancini, F.; Alighieri, M.; Dal Canto, E.; Masucci, M.; Vara-Lubiano, M.; Gutiérrez, P. J.; Desmars, J.; Lecacheux, J.; Vieira-Martins, R.; Camargo, J. I. B.; Assafin, M.; Colas, F.; Beisker, W.; Behrend, R.; Mueller, T. G.; Meza, E.; Gomes-Junior, A. R.; Roques, F.; Vachier, F.; Mottola, S.; Hellmich, S.; Campo …

Absolute magnitude010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysicsKuiper belt objects: individual: 2002 TC30201 natural sciencesOccultationlaw.inventionTelescopePhotometry (optics)lawGeometric albedoFísica Aplicada0103 physical sciencesTrans-Neptunian object010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesPhysics[PHYS]Physics [physics]Earth and Planetary Astrophysics (astro-ph.EP)photometric [Techniques]Astronomy and Astrophysicsgeneral [Kuiper belt]Astrometryindividual: 2002 TC302 [Kuiper belt objects]AstrometryAstrometry; Kuiper belt objects: individual: 2002 TC302; Kuiper belt: general; Occultations; Techniques: photometricLight curveSpace and Planetary Science[SDU]Sciences of the Universe [physics]Kuiper belt: generalOccultations[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Techniques: photometricAstrophysics - Earth and Planetary AstrophysicsAstronomy & Astrophysics
researchProduct